Physiological fluids


In this research theme, our objective is to make a significant contribution to the understanding of the transport processes taking place in the respiratory and cardiovascular systems, in the perspective of being able to propose innovative solutions for various pathologies.

Regarding the respiratory system, we have two distinct, but coupled, interests. The first objective of our research is to go towards a better understanding of the dynamics of the bronchial mucus, in healthy and unhealthy people. Human bronchi are covered with a thin layer of mucus. This layer acts as a trap for inspired fine particles and microorganisms. However, today, the dynamics of the bronchial mucus is still poorly understood. In addition, it is known that, in the context of certain diseases such as asthma and cystic fibrosis, this dynamics is significantly impaired. In collaboration with the pulmonology department of the Erasme Hospital, our goal is to improve the understanding of the bronchial mucus dynamics by combining in silico (modelling and simulation) and in vitro (laboratory experiments) studies. A specific objective is to analyse the coupling, potentially very important, between the rheology of the mucus and the respiratory conditions (respiration frequency, breathing air temperature and humidity…). Another of our objectives is to understand how the heterogeneity of the lungs (whether natural or induced by pathologies) influences the exchange processes within it (water, heat, oxygen transport). In this context, we are interested in describing the dynamics of the NO, a physiological molecule that can be considered as a marker of different phenomena. In particular, in collaboration with the Karolinska Institute (Sweden), we are studying how this molecule can be used as a tool for monitoring respiratory function on the International Space Station (ISS).

Regarding the cardiovascular system, our interest lies in the ballistocardiography (BCG) technique. It is a medical technique consisting in measuring, thanks to sensors, the small movements of the body induced by the blood circulation. It is used in particular on the ISS, to monitor the time evolution of the heart health of astronauts. Measured signals have been shown to be good indicators of the heart function. Nevertheless, quantitative links between physiological parameters of the heart and the signals measured in BCG have not yet been fully established. In this frame, in collaboration with the cardiology department of the Erasme Hospital (Dr. Pierre-François Migeotte), we develop the fundamental scientific knowledge behind BCG. For this, mathematical models of the body movements induced by the blood flow in the arteries are established, by the combination of fluid mechanics and analytical mechanics approaches. Then, these models are simulated and challenged against BCG signals obtained on Earth or on the ISS, under well-defined conditions, and on patients for whom certain cardiac parameters have been altered in a known manner. 

Finally, as part of the Nasal cast project, we aim to develop, through digital simulation and 3D printing, solutions to optimize the "nose-to-brain" delivery of drugs against degenerative diseases.

Contact : Benoit Haut (


Selected publications

Karamaoun, C., Sobac, B., Mauroy, B., Van Muylem, A., & Haut, B. New Insights into the Mechanisms Controlling the Bronchia Mucus Balance. PLOS One, published 22 June 2018

Karamaoun, C., Haut, B., & Van Muylem, A. A new role for the exhaled nitric oxide as a functional marker of peripheral airway calibre changes: a theoretical study. Journal of Applied Physiology, 124, 1025-1033. 2018

Karamaoun, C., Van Muylem, A., & Haut, B. Modelling of the nitric oxide transport in the human lungs. Frontiers in Physiology, 7, 255. 2016



  • PRODEX NINOC project

    Transport phenomena in human lungs with a mechanical perspectives: numerical, theoretical analysis of the interaction between lungs heterogeneity (healthy or unhealthy situations), NO transport, water and heat exchange and O2 ventilation. PI : Benoit Haut

    Funded by BELSPO-ESA
  • PhD Thesis of Jérémy Rabineau

    Cardiovascular system in actual and simulated space conditions: numerical models, countermeasures, and wearable monitoring. PI : Benoit Haut

    Funded by the FNRS
  • Postdoctoral position of Benjamin Sobac

    Evaporation of liquids in the presence of a complex interface. PI : Pierre Colinet and Benoit Haut

    Funded by the FNRS