Gas-liquid transfers

Presentation

In our research work in the field of gas-liquid transfers, we are interested in different scales in a gas-liquid contactor: the scale of the gas-liquid interface, the scale of the inclusion (bubble or drop) and the scale of the device.

At the scale of the interface, our objective is to highlight and characterize the complex coupling that can exist between diffusion, convection and chemical reactions, during the absorption of CO2 in a liquid. We combine an experimental approach, based on interferometry, and theoretical (stability analysis) and numerical approaches.

At the scale of the inclusion, we aim to describe the transport phenomena (mass and momentum) taking place inside and around a bubble/drop within a gas-liquid contactor. By combining theoretical (balance equations, stability analysis, asymptotic techniques...), numerical (commercial codes, “home-made” codes) and experimental tools (essentially implementing optical diagnostic techniques: shadowing or interferometry), we can obtain original results, related for example to the dynamics of bubbles in microchannels (paying a special attention to the inertial and capillary migration forces, as well as to the role of surfactants.), the dynamics and morphology of unconfined ellipsoidal bubbles or the coupling between flow, bubble-liquid or gas-droplet mass transfer and chemical reaction.

At the scale of the device, our goal is to integrate the results obtained at the scale of the gas-liquid interface into classical chemical engineering approaches, in order to contribute to the optimization or the design of different kind of processes, such as Ozonation, CO2 capture, based on absorption in amine solutions or on the formation of CO2 hydrates, or bubbles microabsorbers, in the frame of the development of fine chemicals production processes. For instance, such microabsorbers could be used in the production of high-grade hydrogen peroxide (which is highly explosive).

Researchers

Selected publications

Atasi, O., Haut, B., Pedrono, A., Scheid, B., & Legendre, D. Infuence of soluble surfactants and deformation on the dynamics of centered bubbles in cylindrical microchannels. Langmuir (published online). 2018

Rivero-Rodriguez, J., & Scheid, B. Bubble dynamics in microchannels: internial and capillary migration forces. Jounal of Fluid Mechanics, 842, 215-247. 2018

Wylock, C., Rednikov, A., Colinet, P., & Haut, B. Experimental and numerical analysis of buoyancy-induced instability during CO2 absorption in NaHCO3-Na2CO3 aqueous solutions. Chemical Engineering Science, 151, 232-246. 2017

Douieb, S., Fradette, L., François, B., & Haut, B. Impact of the fluid flow conditions on the formation rate of carbon dioxide hydrates in a semi-batch stirred tank reactor. AIChE Journal, 61(12), 4387-4401. 2015

Mikaelian D., Haut B., & Scheid B., Bubbly flow and gas-liquid mass transfer in square and circular microchannels for stress-free and rigid interfaces: dissolution model, Microfluidics & Nanofluidics, 19, 899-911. 2015

Mikaelian, D., Larcy, A., Cockx, A., Wylock, C., & Haut, B. Dynamics and morphology of single ellipsoidal bubbles in liquids. Experimental Thermal and Fluid Science, 64, 1-12. 2015

Wylock, C., Rednikov, A., Haut, B., & Colinet, P. Nonmonotonic Rayleigh-Taylor instabilities driven by gas-liquid COchemisorptionJournal of Physical Chemistry B, 118(38), 11323-11329

Projects

  • MICROECO project

    Development of scientific bases for the design of bubble microabsorbers. PI : Benoit Scheid

    Funded by INNOVIRIS
  • PhD Thesis of Omer Atasi

    Influence of surfactants on the dynamics of an unconfined bubble in a microchannel and development of methods for the characterization of the liquid film separating a confined bubble from the channel wall. PI : Benoit Haut and Benoit Scheid

    Funded the FNRS
  • ACOVI

    Development of systems for the capture of volatile organic compounds in communities rooms (classroom...). PI : Frédéric Debaste

    Funded by INNOVIRIS